Locally Harmonic Maass Forms and the Kernel of the Shintani Lift

نویسندگان

  • KATHRIN BRINGMANN
  • Marvin Knopp
چکیده

In this paper we define a new type of modular object and construct explicit examples of such functions. Our functions are closely related to cusp forms constructed by Zagier [37] which played an important role in the construction by Kohnen and Zagier [26] of a kernel function for the Shimura and Shintani lifts between half-integral and integral weight cusp forms. Although our functions share many properties in common with harmonic weak Maass forms, they also have some properties which strikingly contrast those exhibited by harmonic weak Maass forms. As a first application of the new theory developed in this paper, one obtains a new proof of the fact that the even periods of Zagier’s cusp forms are rational as an easy corollary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Formulas for the Coefficients of Half-integral Weight Harmonic Weak Maass Forms

We prove that the coefficients of certain weight −1/2 harmonic Maass forms are “traces” of singular moduli for weak Maass forms. To prove this theorem, we construct a theta lift from spaces of weight −2 harmonic weak Maass forms to spaces of weight −1/2 vectorvalued harmonic weak Maass forms on Mp2(Z), a result which is of independent interest. We then prove a general theorem which guarantees (...

متن کامل

Zagier-type dualities and lifting maps for harmonic Maass–Jacobi forms

The real-analytic Jacobi forms of Zwegers’ PhD thesis play an important role in the study of mock theta functions and related topics, but have not been part of a rigorous theory yet. In this paper, we introduce harmonic Maass–Jacobi forms, which include the classical Jacobi forms as well as Zwegers’ functions as examples. Maass–Jacobi–Poincaré series also provide prime examples. We compute thei...

متن کامل

Integral Traces of Singular Values of Weak Maass Forms

We define traces associated to a weakly holomorphic modular form f of arbitrary negative even integral weight and show that these traces appear as coefficients of certain weakly holomorphic forms of half-integral weight. If the coefficients of f are integral, then these traces are integral as well. We obtain a negative weight analogue of the classical Shintani lift and give an application to a ...

متن کامل

Heegner Divisors, L-functions and Harmonic Weak Maass Forms

Recent works, mostly related to Ramanujan’s mock theta functions, make use of the fact that harmonic weak Maass forms can be combinatorial generating functions. Generalizing works of Waldspurger, Kohnen and Zagier, we prove that such forms also serve as “generating functions” for central values and derivatives of quadratic twists of weight 2 modular L-functions. To obtain these results, we cons...

متن کامل

Lifting Elliptic Cusp Forms to Maass Forms with an Application to Partitions

Abstract. For 2 < k ∈ 1 2 Z, we define lifts of cuspidal Poincaré series in Sk(Γ0(N)) to weight 2 − k harmonic weak Maass forms. This construction answers a question of Dyson by providing the general framework “explaining” Ramanujan’s mock theta functions. As an application, we show that the number of partitions of a positive integer n is the “trace” of singular moduli of a Maass form arising f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014